Reprinted from Mathematics Magazine 40.2(1967)107.

A Polynomial of Primes

634. [September, 1966] Proposed by R. S. Luthar and Stephen Wurzel, Colby College, Maine.

If p is a prime, such that

$$
p^{2} \not \equiv p(\bmod 3)
$$

show that

$$
p^{2 n-1}+p^{2 n-3}+\cdots+p+n \equiv 0(\bmod 3)
$$

Solution by Stanley Rabinowitz, Far Rockaway, New York.
The conclusion is true if p is any number relatively prime to 3 . If $p^{2}-p \neq 0$ $(\bmod 3)$ and $(p, 3)=1$, then $p \neq 0(\bmod 3)$, and so $p-1 \neq 0(\bmod 3)$. The only other case is that $p \equiv-1(\bmod 3)$. Since by Fermat's Theorem, $p^{2} \equiv 1(\bmod 3)$, we also have $p^{3} \equiv-1, p^{5} \equiv-1, p^{7} \equiv-1, \cdots,(\bmod 3)$. Hence $p^{2 n-1}+p^{2 n-3}$ $+\cdots p^{3}+p \equiv(-1)+(-1)+\cdots+(-1)+(-1) \equiv-n(\bmod 3)$ and the result follows.

