Reprinted from Mathematics Magazine 40.2(1967)107.

A Polynomial of Primes

634. [September, 1966] Proposed by R. S. Luthar and Stephen Wurzel, Colby College, Maine.

If p is a prime, such that

$$p^2 \not\equiv p \pmod{3}$$

show that

$$p^{2n-1} + p^{2n-3} + \cdots + p + n \equiv 0 \pmod{3}$$
.

Solution by Stanley Rabinowitz, Far Rockaway, New York.

The conclusion is true if p is any number relatively prime to 3. If $p^2 - p \not\equiv 0 \pmod{3}$ and (p, 3) = 1, then $p \not\equiv 0 \pmod{3}$, and so $p - 1 \not\equiv 0 \pmod{3}$. The only other case is that $p \equiv -1 \pmod{3}$. Since by Fermat's Theorem, $p^2 \equiv 1 \pmod{3}$, we also have $p^3 \equiv -1$, $p^5 \equiv -1$, $p^7 \equiv -1$, \cdots , $\pmod{3}$. Hence $p^{2n-1} + p^{2n-3} + \cdots + p^3 + p \equiv (-1) + (-1) + \cdots + (-1) + (-1) \equiv -n \pmod{3}$ and the result follows.